Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor–stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.
You may also like
New Research Shows How Cultural Transmission Shapes...
March 27, 2023Max Planck Institute for Empirical Aesthetics
Amygdala Intercalated Cells: Gatekeepers and Conveyors...
January 19, 2023Max Planck Florida Institute for Neuroscience
Aversive bimodal associations differently impact...
January 19, 2023Max Planck Institute for Chemical Ecology
Commonalities and Asymmetries in the Neurobiological...
January 5, 2023Max Planck Institute for Psycholinguistics
A hierarchy of linguistic predictions during natural...
January 5, 2023Max Planck Institute for Psycholinguistics
Neuroscientists illuminate how brain cells deep in the...
December 1, 2022Max Planck Institute for Neurobiology of Behavior – caesar