Neurons localize mRNAs near synapses where their translation can be regulated by synaptic demand and activity. Differences in the 3′ UTRs of mRNAs can change their localization, stability, and translational regulation. Using 3′ end RNA sequencing of microdissected rat brain slices, we discovered a huge diversity in mRNA 3′ UTRs, with many transcripts showing enrichment for a particular 3′ UTR isoform in either somata or the neuropil. The 3′ UTR isoforms of localized transcripts are significantly longer than the 3′ UTRs of non-localized transcripts and often code for proteins associated with axons, dendrites, and synapses. Surprisingly, long 3′ UTRs add not only new, but also duplicate regulatory elements. The neuropil-enriched 3′ UTR isoforms have significantly longer half-lives than somata-enriched isoforms. Finally, the 3′ UTR isoforms can be significantly altered by enhanced activity. Most of the 3′ UTR plasticity is transcription dependent, but intriguing examples of changes that are consistent with altered stability, trafficking between compartments, or local “remodeling” remain.
You may also like
Insulin-like hormones critical for brain plasticity
August 7, 2023Max Planck Florida Institute for Neuroscience
A Butterfly Effect
July 27, 2023Max Planck Florida Institute for Neuroscience
Deep learning models to study sentence comprehension...
June 28, 2023Max Planck Institute for Psycholinguistics
How the brain slows down when we focus our gaze
June 28, 2023Max Planck Institute for Biological Cybernetics
When pigeons dream
Fruit fly’s complex symphony of vision
June 6, 2023Max Planck Institute for Biological Intelligence