Dendritic spines are mushroom-shaped postsynaptic compartments that host biochemical signal cascades important for synaptic plasticity and, ultimately, learning and memory. Signaling events in spines involve a signaling network composed of hundreds of signaling proteins interacting with each other extensively. Synaptic plasticity is typically induced by Ca2+ elevation in spines, which activates a variety of signaling pathways. This leads to changes in the actin cytoskeleton and membrane dynamics, which in turn causes structural and functional changes of the spine. Recent studies have demonstrated that the activities of these proteins have a variety of spatiotemporal patterns, which orchestrate signaling activity in different subcellular compartments at different timescales. The diffusion and the decay kinetics of signaling molecules play important roles in determining the degree of their spatial spreading, and thereby the degree of the spine specificity of the signaling pathway.
You may also like
New approach reveals structure and function of...
December 16, 2020Max Planck Florida Institute for Neuroscience
Targeting Functionally Characterized Synaptic...
December 15, 2020Max Planck Florida Institute for Neuroscience
Modulation Spectra Capture EEG Responses to Speech...
December 14, 2020Max Planck Institute for Empirical Aesthetics
Word contexts enhance the neural representation of...
December 11, 2020Max Planck Institute for Psycholinguistics
Charting the developing brain
December 3, 2020Max Planck Institute for Brain Research
Molecular break on learning: uncovering a potential...
November 30, 2020Max Planck Florida Institute for Neuroscience