CaMKII plays a critical role in decoding calcium (Ca2+) signals to initiate long-lasting synaptic plasticity. However, the properties of CaMKII that mediate Ca2+ signals in spines remain elusive. Here, we measured CaMKII activity in spines using fast-framing two-photon fluorescence lifetime imaging. Following each pulse during repetitive Ca2+ elevations, CaMKII activity increased in a stepwise manner. Thr286 phosphorylation slows the decay of CaMKII and thus lowers the frequency required to induce spine plasticity by several fold. In the absence of Thr286 phosphorylation, increasing the stimulation frequency results in high peak mutant CaMKIIT286A activity that is sufficient for inducing plasticity. Our findings demonstrate that Thr286 phosphorylation plays an important role in induction of LTP by integrating Ca2+ signals, and it greatly promotes, but is dispensable for, the activation of CaMKII and LTP.
You may also like
Amygdala Intercalated Cells: Gatekeepers and Conveyors...
January 19, 2023Max Planck Florida Institute for Neuroscience
Aversive bimodal associations differently impact...
January 19, 2023Max Planck Institute for Chemical Ecology
In the zone for memories
January 10, 2023Max Planck Institute for Brain Research
Commonalities and Asymmetries in the Neurobiological...
January 5, 2023Max Planck Institute for Psycholinguistics
A hierarchy of linguistic predictions during natural...
January 5, 2023Max Planck Institute for Psycholinguistics
Language as a Marker of the Mind
October 6, 2022Max Planck Institute for Psycholinguistics