Changes in the efficacies of synapses are thought to be the neurobiological basis of learning and memory. The efficacy of a synapse depends on its current number of neurotransmitter receptors. Recent experiments have shown that these receptors are highly dynamic, moving back and forth between synapses on time scales of seconds and minutes. This suggests spontaneous fluctuations in synaptic efficacies and a competition of nearby synapses for available receptors. Here we propose a mathematical model of this competition of synapses for neurotransmitter receptors from a local dendritic pool. Using minimal assumptions, the model produces a fast multiplicative scaling behavior of synapses. Furthermore, the model explains a transient form of heterosynaptic plasticity and predicts that its amount is inversely related to the size of the local receptor pool. Overall, our model reveals logistical tradeoffs during the induction of synaptic plasticity due to the rapid exchange of neurotransmitter receptors between synapses.
You may also like
New approach reveals structure and function of...
December 16, 2020Max Planck Florida Institute for Neuroscience
Targeting Functionally Characterized Synaptic...
December 15, 2020Max Planck Florida Institute for Neuroscience
Modulation Spectra Capture EEG Responses to Speech...
December 14, 2020Max Planck Institute for Empirical Aesthetics
Networks for memory and learning
December 11, 2020Max Planck Institute of Psychiatry
Word contexts enhance the neural representation of...
December 11, 2020Max Planck Institute for Psycholinguistics
Charting the developing brain
December 3, 2020Max Planck Institute for Brain Research