Dendrites of cortical pyramidal neurons contain intermingled excitatory and inhibitory synapses. We studied the local mechanisms that regulate the formation and distribution of synapses. We found that local γ-aminobutyric acid (GABA) release on dendrites of mouse cortical layer 2/3 pyramidal neurons could induce gephyrin puncta and dendritic spine formation via GABA type A receptor activation and voltage-gated calcium channels during early postnatal development. Furthermore, the newly formed inhibitory and excitatory synaptic structures rapidly gained functions. Bidirectional manipulation of GABA release from somatostatin-positive interneurons increased and decreased the number of gephyrin puncta and dendritic spines, respectively. These results highlight a noncanonical function of GABA as a local synaptogenic element shaping the early establishment of neuronal circuitry in mouse cortex.
You may also like
Insulin-like hormones critical for brain plasticity
August 7, 2023Max Planck Florida Institute for Neuroscience
A Butterfly Effect
July 27, 2023Max Planck Florida Institute for Neuroscience
Deep learning models to study sentence comprehension...
June 28, 2023Max Planck Institute for Psycholinguistics
How the brain slows down when we focus our gaze
June 28, 2023Max Planck Institute for Biological Cybernetics
Fruit fly’s complex symphony of vision
June 6, 2023Max Planck Institute for Biological Intelligence
How tasty is the food? Ask your brain!
June 6, 2023Max Planck Institute for Biological Intelligence