Dendrites of cortical pyramidal neurons contain intermingled excitatory and inhibitory synapses. We studied the local mechanisms that regulate the formation and distribution of synapses. We found that local γ-aminobutyric acid (GABA) release on dendrites of mouse cortical layer 2/3 pyramidal neurons could induce gephyrin puncta and dendritic spine formation via GABA type A receptor activation and voltage-gated calcium channels during early postnatal development. Furthermore, the newly formed inhibitory and excitatory synaptic structures rapidly gained functions. Bidirectional manipulation of GABA release from somatostatin-positive interneurons increased and decreased the number of gephyrin puncta and dendritic spines, respectively. These results highlight a noncanonical function of GABA as a local synaptogenic element shaping the early establishment of neuronal circuitry in mouse cortex.
You may also like
Hot on the messenger’s trail
March 30, 2021Max Planck Institute for Brain Research
The astonishing self-organization skills of the brain
March 23, 2021Max Planck Institute for Biological Cybernetics
How the brain teaches itself to see
March 16, 2021Max Planck Institute for Brain Research
The fruit fly and its comb-shaped neurons
February 1, 2021Ernst Strüngmann Institute for Neuroscience
Science on film, episode 4: Motivational states of the...
January 29, 2021Max Planck Institute for Biological Cybernetics
A small molecule involved in depression
January 29, 2021Max Planck Institute of Psychiatry