Accurate memories are often associated with vivid experiences of recollection. However, the neural mechanisms underlying subjective recollection and their unique role in decision making beyond accuracy have received limited attention. We dissociated subjective recollection from accuracy during a forced-choice task. Distractors corresponded either to non-studied exemplars of the targets (A-A’ condition) or to non-studied exemplars of different studied items (A-B’ condition). The A-A’ condition resulted in higher accuracy and greater activation in the superior parietal lobe, whereas the A-B’ condition resulted in higher subjective recollection and greater activation in the precuneus and retrosplenial regions, indicating a dissociation between objective and subjective memory. Activation in insular, cingulate, and lateral prefrontal regions was also associated with subjective recollection; however, during a subsequent decision phase, activation in these same regions was greater for discarded than for selected responses in anticipation of a social reward, underscoring their role in evaluating memory evidence flexibly based on current goals.
You may also like
New Research Shows How Cultural Transmission Shapes...
March 27, 2023Max Planck Institute for Empirical Aesthetics
Artificial Intelligence from a Psychologist’s Point...
March 15, 2023Max Planck Institute for Biological Cybernetics
Mapping unknown territory
February 27, 2023Max Planck Institute for Biological Intelligence
Uridine makes you hungry
January 23, 2023Max Planck Institute for Metabolism Research
Amygdala Intercalated Cells: Gatekeepers and Conveyors...
January 19, 2023Max Planck Florida Institute for Neuroscience
Aversive bimodal associations differently impact...
January 19, 2023Max Planck Institute for Chemical Ecology