In memory, our continuous experiences are broken up into discrete events. Boundaries between events are known to influence the temporal organization of memory. However, how and through which mechanism event boundaries shape temporal order memory (TOM) remains unknown. Across four experiments, we show that event boundaries exert a dual role: improving TOM for items within an event and impairing TOM for items across events. Decreasing event length in a list enhances TOM, but only for items at earlier local event positions, an effect we term the local primacy effect. A computational model, in which items are associated to a temporal context signal that drifts over time but resets at boundaries captures all behavioural results. Our findings provide a unified algorithmic mechanism for understanding how and why event boundaries affect TOM, reconciling a long-standing paradox of why both contextual similarity and dissimilarity promote TOM.
You may also like
Higher-order olfactory neurons in the lateral horn...
June 13, 2022Max Planck Institute for Chemical Ecology
Getting in the Groove: Why samba makes everyone want...
Estimating the pace of change
April 26, 2022Max Planck Institute for Biological Cybernetics
Out of rhythm: Compromised precision of theta-gamma...
April 26, 2022Max Planck Institute for Human Development
Near-natural, fractal architecture promotes well-being
April 26, 2022Max Planck Institute for Biological Cybernetics
Decoding cognition from spontaneous neural activity
April 26, 2022Max Planck Institute for Human Development