A scalable and high-throughput method to identify precise subcellular localization of endogenous proteins is essential for integrative understanding of a cell at the molecular level. Here, we developed a simple and generalizable technique to image endogenous proteins with high specificity, resolution, and contrast in single cells in mammalian brain tissue. The technique, single-cell labeling of endogenous proteins by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated homology-directed repair (SLENDR), uses in vivo genome editing to insert a sequence encoding an epitope tag or a fluorescent protein to a gene of interest by CRISPR-Cas9-mediated homology-directed repair (HDR). Single-cell, HDR-mediated genome editing was achieved by delivering the editing machinery to dividing neuronal progenitors through in utero electroporation. We demonstrate that SLENDR allows rapid determination of the localization and dynamics of many endogenous proteins in various cell types, regions, and ages in the brain. Thus, SLENDR provides a high-throughput platform to map the subcellular localization of endogenous proteins with the resolution of micro- to nanometers in the brain.
You may also like
The fruit fly and its comb-shaped neurons
February 1, 2021Ernst Strüngmann Institute for Neuroscience
Science on film, episode 4: Motivational states of the...
January 29, 2021Max Planck Institute for Biological Cybernetics
A small molecule involved in depression
January 29, 2021Max Planck Institute of Psychiatry
Max Planck Florida and Zeiss Announce Research...
January 13, 2021Max Planck Florida Institute for Neuroscience
New approach reveals structure and function of...
December 16, 2020Max Planck Florida Institute for Neuroscience
Targeting Functionally Characterized Synaptic...
December 15, 2020Max Planck Florida Institute for Neuroscience