Vocal turn-taking is a fundamental organizing principle of human conversation but the neural circuit mechanisms that structure coordinated vocal interactions are unknown. The ability to exchange vocalizations in an alternating fashion is also exhibited by other species, including zebra finches. With a combination of behavioral testing, electrophysiological recordings, and pharmacological manipulations we demonstrate that activity within a cortical premotor nucleus orchestrates the timing of calls in socially interacting zebra finches. Within this circuit, local inhibition precedes premotor neuron activation associated with calling. Blocking inhibition results in faster vocal responses as well as an impaired ability to flexibly avoid overlapping with a partner. These results support a working model in which premotor inhibition regulates context-dependent timing of vocalizations and enables the precise interleaving of vocal signals during turn-taking.
You may also like
Tracing the many paths of vision
January 23, 2021Max Planck Institute of Neurobiology
Targeting Functionally Characterized Synaptic...
December 15, 2020Max Planck Florida Institute for Neuroscience
Modulation Spectra Capture EEG Responses to Speech...
December 14, 2020Max Planck Institute for Empirical Aesthetics
Mice under stress
December 11, 2020Max Planck Institute of Psychiatry
Networks for memory and learning
December 11, 2020Max Planck Institute of Psychiatry
Word contexts enhance the neural representation of...
December 11, 2020Max Planck Institute for Psycholinguistics