Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context.
You may also like
Insulin-like hormones critical for brain plasticity
August 7, 2023Max Planck Florida Institute for Neuroscience
A Butterfly Effect
July 27, 2023Max Planck Florida Institute for Neuroscience
Deep learning models to study sentence comprehension...
June 28, 2023Max Planck Institute for Psycholinguistics
How the brain slows down when we focus our gaze
June 28, 2023Max Planck Institute for Biological Cybernetics
Fruit fly’s complex symphony of vision
June 6, 2023Max Planck Institute for Biological Intelligence
How tasty is the food? Ask your brain!
June 6, 2023Max Planck Institute for Biological Intelligence