While it is generally appreciated that learning involves the structural rearrangement of neuronal circuits, the underlying orchestration of molecular events that drives these changes is not as well understood. Recent studies on the spatiotemporal organization of synaptic signaling events have provided new insights into the biochemical underpinnings of various expressions of structural neuronal plasticity, as well as the functional consequences that emerge because of the particular behavior of the molecules involved. In particular, activity patterns of and interplay among a class of morphogenic signaling proteins, the Rho GTPases, and their downstream signals, are found to be critical for linking neuronal activity with various forms of neuronal plasticity. We review recent findings on this topic and discuss their physiological implications.
You may also like
Modeling the turtle brain provides insights: Routing...
February 15, 2023Max Planck Institute for Brain Research
Amygdala Intercalated Cells: Gatekeepers and Conveyors...
January 19, 2023Max Planck Florida Institute for Neuroscience
Aversive bimodal associations differently impact...
January 19, 2023Max Planck Institute for Chemical Ecology
In the zone for memories
January 10, 2023Max Planck Institute for Brain Research
Commonalities and Asymmetries in the Neurobiological...
January 5, 2023Max Planck Institute for Psycholinguistics
A hierarchy of linguistic predictions during natural...
January 5, 2023Max Planck Institute for Psycholinguistics