Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition. We show that reducing sensory glutamate release results in decreased expression of GABA-synthesizing enzymes GAD65 and GAD67 in GABApre terminals and decreased presynaptic inhibition. Glutamate directs GAD67 expression via the metabotropic glutamate receptor mGluR1β on GABApre terminals and regulates GAD65 expression via autocrine influence on sensory terminal BDNF. We demonstrate that dual retrograde signals from sensory terminals operate hierarchically to direct the molecular differentiation of GABApre terminals and the efficacy of presynaptic inhibition. These retrograde signals comprise a feedback mechanism by which excitatory sensory activity drives GABAergic inhibition to maintain circuit homeostasis.
You may also like
The fruit fly and its comb-shaped neurons
February 1, 2021Ernst Strüngmann Institute for Neuroscience
Cannibal worms spare their own brood
February 1, 2021Center for Advanced European Studies and Research
Science on film, episode 4: Motivational states of the...
January 29, 2021Max Planck Institute for Biological Cybernetics
A small molecule involved in depression
January 29, 2021Max Planck Institute of Psychiatry
When the Mario Brothers feel dizzy
January 29, 2021Max Planck Institute for Biological Cybernetics
See where the journey goes
January 29, 2021Max Planck Institute for Biological Cybernetics