Few tools exist to visualize and manipulate neurons that are targets of neuromodulators. We present iTango, a light- and ligand-gated gene expression system based on a light-inducible split tobacco etch virus protease. Cells expressing the iTango system exhibit increased expression of a marker gene in the presence of dopamine and blue-light exposure, both in vitro and in vivo. We demonstrated the iTango system in a behaviorally relevant context, by inducing expression of optogenetic tools in neurons under dopaminergic control during a behavior of interest. We thereby gained optogenetic control of these behaviorally relevant neurons. We applied the iTango system to decipher the roles of two classes of dopaminergic neurons in the mouse nucleus accumbens in a sensitized locomotor response to cocaine. Thus, the iTango platform allows for control of neuromodulatory circuits in a genetically and functionally defined manner with spatial and temporal precision.
You may also like
Silence for thought: special interneuron networks in...
June 27, 2022Max Planck Institute for Brain Research
Event boundaries shape temporal organization of memory...
June 15, 2022Max Planck Institute for Empirical Aesthetics
Naturalistic viewing conditions can increase task...
June 14, 2022Max Planck Institute for Empirical Aesthetics
Higher-order olfactory neurons in the lateral horn...
June 13, 2022Max Planck Institute for Chemical Ecology