Humans anticipate events signaled by sensory cues. It is commonly assumed that two uncertainty parameters modulate the brain’s capacity to predict: the hazard rate (HR) of event probability and the uncertainty in time estimation which increases with elapsed time. We investigate both assumptions by presenting event probability density functions (PDFs) in each of three sensory modalities. We show that perceptual systems use the reciprocal PDF and not the HR to model event probability density. We also demonstrate that temporal uncertainty does not necessarily grow with elapsed time but can also diminish, depending on the event PDF. Previous research identified neuronal activity related to event probability in multiple levels of the cortical hierarchy (sensory (V4), association (LIP), motor and other areas) proposing the HR as an elementary neuronal computation. Our results—consistent across vision, audition, and somatosensation—suggest that the neurobiological implementation of event anticipation is based on a different, simpler and more stable computation than HR: the reciprocal PDF of events in time.
You may also like
ESI SyNC 2023 – Linking hypotheses: where...
July 24, 2023
Poetic birdsong, precisely tuned
July 24, 2023Max Planck Institute for Biological Intelligence
Here Comes the Sun
Deep learning models to study sentence comprehension...
June 28, 2023Max Planck Institute for Psycholinguistics
Oh, That’s Nice
June 28, 2023Max Planck Institute for Empirical Aesthetics
Risk factor for psychiatric disorders has different...
June 28, 2023Max Planck Institute of Psychiatry