All animals must eat in order to survive but first they must successfully locate and appraise food resources in a manner consonant with their needs. To accomplish this, external sensory information, in particular olfactory food cues, need to be detected and appropriately categorized. Recent advances in Drosophila point to the existence of parallel processing circuits within the central brain that encode odor valence, supporting approach and avoidance behaviors. Strikingly, many elements within these neural systems are subject to modification as a function of the fly’s satiety state. In this review we describe those advances and their potential impact on the decision to feed.
You may also like
Getting in the Groove: Why samba makes everyone want...
Estimating the pace of change
April 26, 2022Max Planck Institute for Biological Cybernetics
Prefrontal cortex involved in conscious vision
April 26, 2022Max Planck Institute for Biological Cybernetics
Out of rhythm: Compromised precision of theta-gamma...
April 26, 2022Max Planck Institute for Human Development
Near-natural, fractal architecture promotes well-being
April 26, 2022Max Planck Institute for Biological Cybernetics
Decoding cognition from spontaneous neural activity
April 26, 2022Max Planck Institute for Human Development