The frontal eye fields (FEFs) and the anterior cingulate cortex (ACC) are commonly coactivated for cognitive saccade tasks, but whether this joined activation indexes coordinated activity underlying successful guidance of sensorimotor mapping is unknown. Here we test whether ACC and FEF circuits coordinate through phase synchronization of local field potential and neural spiking activity in macaque monkeys performing memory-guided and pro- and anti-saccades. We find that FEF and ACC showed prominent synchronization at a 3–9 Hz theta and a 12–30 Hz beta frequency band during the delay and preparation periods with a strong Granger-causal influence from ACC to FEF. The strength of theta- and beta-band coherence between ACC and FEF but not variations in power predict correct task performance. Taken together, the results support a role of ACC in cognitive control of frontoparietal networks and suggest that narrow-band theta and to some extent beta rhythmic activity indexes the coordination of relevant information during periods of enhanced control demands.
You may also like
Getting in the Groove: Why samba makes everyone want...
Estimating the pace of change
April 26, 2022Max Planck Institute for Biological Cybernetics
Prefrontal cortex involved in conscious vision
April 26, 2022Max Planck Institute for Biological Cybernetics
Out of rhythm: Compromised precision of theta-gamma...
April 26, 2022Max Planck Institute for Human Development
Near-natural, fractal architecture promotes well-being
April 26, 2022Max Planck Institute for Biological Cybernetics
Locus coeruleus integrity is related to tau burden and...
April 26, 2022Max Planck Institute for Human Development