The cerebellar system helps modulate and fine-tune motor action. Purkinje cells (PCs) provide the sole output of the cerebellar cortex, therefore, any cerebellar involvement in motor activity must be driven by changes in PC firing rates. Several different cell types influence PC activity including excitatory input from parallel fibers and inhibition from molecular layer interneurons (MLIs). Similar to PCs, MLI activity is driven by parallel fibers, therefore, MLIs provide feed-forward inhibition onto PCs. To aid in the experimental assessment of how molecular layer inhibition contributes to cerebellar function and motor behavior, we characterized a new knock-in mouse line with Cre recombinase expression under control of endogenous c-kit transcriptional machinery. Using these engineered c-Kit mice, we were able to obtain high levels of conditional MLI transduction in adult mice using Cre-dependent viral vectors without any PC or granule cell labeling. We then used the mouse line to target MLIs for activity perturbation in vitro using opto- and chemogenetics.
You may also like
New study reveals ‘moonlighting’ function of part...
May 26, 2023Max Planck Institute for Brain Research
Competition between brain hemispheres during sleep
March 27, 2023Max Planck Institute for Brain Research
New Research Shows How Cultural Transmission Shapes...
March 27, 2023Max Planck Institute for Empirical Aesthetics
Modeling the turtle brain provides insights: Routing...
February 15, 2023Max Planck Institute for Brain Research
Amygdala Intercalated Cells: Gatekeepers and Conveyors...
January 19, 2023Max Planck Florida Institute for Neuroscience
Aversive bimodal associations differently impact...
January 19, 2023Max Planck Institute for Chemical Ecology