Alcohol consumption affects many organs and tissues, including skeletal muscle. However, the molecular mechanism of ethanol action on skeletal muscle remains unclear. Here, using molecular dynamics simulations and single channel recordings, we show that ethanol interacts with a negatively charged amino acid within an extracellular region of the neuromuscular nicotinic acetylcholine receptor (nAChR), thereby altering its global conformation and reducing the single channel current amplitude. Charge reversal of the negatively charged amino acid abolishes the nAChR-ethanol interaction. Moreover, using transgenic animals harboring the charge-reversal mutation, ex vivo measurements of muscle force production show that ethanol counters fatigue in wild type but not homozygous αE83K mutant animals. In accord, in vivo studies of motor coordination following ethanol administration reveal an approximately twofold improvement for wild type compared to homozygous mutant animals. Together, the converging results from molecular to animal studies suggest that ethanol counters muscle fatigue through its interaction with neuromuscular nAChRs.
You may also like
The fruit fly and its comb-shaped neurons
February 1, 2021Ernst Strüngmann Institute for Neuroscience
Scientists identify workflow algorithm to predict...
January 29, 2021Max Planck Institute of Psychiatry
Science on film, episode 4: Motivational states of the...
January 29, 2021Max Planck Institute for Biological Cybernetics
A small molecule involved in depression
January 29, 2021Max Planck Institute of Psychiatry
When the Mario Brothers feel dizzy
January 29, 2021Max Planck Institute for Biological Cybernetics
See where the journey goes
January 29, 2021Max Planck Institute for Biological Cybernetics