Understanding the rat neurochemical connectome is fundamental for exploring neuronal information processing. By using advanced data mining, supervised machine learning, and network analysis, this study integrates over 5 decades of neuroanatomical investigations into a multiscale, multilayer neurochemical connectome of the rat brain. This neurochemical connectivity database (ChemNetDB) is supported by comprehensive systematically-determined receptor distribution maps. The rat connectome has an onion-type structural organization and shares a number of structural features with mesoscale connectomes of mouse and macaque. Furthermore, we demonstrate that extremal values of graph theoretical measures (e.g., degree and betweenness) are associated with evolutionary-conserved deep brain structures such as amygdala, bed nucleus of the stria terminalis, dorsal raphe, and lateral hypothalamus, which regulate primitive, yet fundamental functions, such as circadian rhythms, reward, aggression, anxiety, and fear. The ChemNetDB is a freely available resource for systems analysis of motor, sensory, emotional, and cognitive information processing.
You may also like
New study reveals ‘moonlighting’ function of part...
May 26, 2023Max Planck Institute for Brain Research
Competition between brain hemispheres during sleep
March 27, 2023Max Planck Institute for Brain Research
New Research Shows How Cultural Transmission Shapes...
March 27, 2023Max Planck Institute for Empirical Aesthetics
Artificial Intelligence from a Psychologist’s Point...
March 15, 2023Max Planck Institute for Biological Cybernetics
Sex-specific differences in response to reduced...
February 27, 2023Max Planck Institute for Biology of Ageing
Mapping unknown territory
February 27, 2023Max Planck Institute for Biological Intelligence