Research has shown that infants are able to track a moving target efficiently – even if it is transiently occluded from sight. This basic ability allows prediction of when and where events happen in everyday life. Yet, it is unclear whether, and how, infants internally represent the time course of ongoing movements to derive predictions. In this study, 10-month-old crawlers observed the video of a same-aged crawling baby that was transiently occluded and reappeared in either a temporally continuous or non-continuous manner (i.e., delayed by 500 ms vs. forwarded by 500 ms relative to the real-time movement). Eye movement and rhythmic neural brain activity (EEG) were measured simultaneously. Eye movement analyses showed that infants were sensitive to slight temporal shifts in movement continuation after occlusion. Furthermore, brain activity associated with sensorimotor processing differed between observation of continuous and non-continuous movements. Early sensitivity to an action’s timing may hence be explained within the internal real-time simulation account of action observation. Overall, the results support the hypothesis that 10-month-old infants are well prepared for internal representation of the time course of observed movements that are within the infants’ current motor repertoire.
You may also like
New Research Shows How Cultural Transmission Shapes...
March 27, 2023Max Planck Institute for Empirical Aesthetics
Artificial Intelligence from a Psychologist’s Point...
March 15, 2023Max Planck Institute for Biological Cybernetics
Mapping unknown territory
February 27, 2023Max Planck Institute for Biological Intelligence
Uridine makes you hungry
January 23, 2023Max Planck Institute for Metabolism Research
Amygdala Intercalated Cells: Gatekeepers and Conveyors...
January 19, 2023Max Planck Florida Institute for Neuroscience
Aversive bimodal associations differently impact...
January 19, 2023Max Planck Institute for Chemical Ecology